INTERNATIONAL JOURNAL OF

SOLIDS and
STRUCTURES

www.elsevier.com/locate/ijsolstr

PERGAMON International Journal of Solids and Structures 39 (2002) 6135-6157

Three-dimensional modeling of intersonic shear-crack
growth in asymmetrically loaded unidirectional
composite plates

C. Yu ?, A. Pandolfi °, M. Ortiz ®*, D. Coker ?, A.J. Rosakis ?

% Graduate Aeronautical Laboratories, California Institute of Technology, Mail Stop 105-50, Pasadena, CA 91125, USA
° Dipartimento di Ingegneria Strutturale, Politecnico di Milano, 20133 Milano, Italy

Received 20 November 2001

Abstract

An anisotropic cohesive model of fracture is applied to the numerical simulation of Coker and Rosakis experiments
(2001). In these experiments, a unidirectional graphite-epoxy composites plate was impacted with a projectile, resulting
in an intersonic shear-dominated crack growth. The simulations account for explicit crack nucleation—through a self-
adaptive remeshing procedure—crack closure and frictional sliding. The parameters used in the cohesive model are
obtained from quasi-static fracture experiments, and successfully predict the dynamic fracture behavior. In keeping
with the experiments, the calculations indicate that there is a preferred intersonic speed for locally steady-state growth
of dynamic shear cracks, provided that sufficient energy is supplied to the crack tip. The calculations also show that the
crack tip can attain speeds in the vicinity of the longitudinal wave speed in the direction of the fibers, if impacted at
higher speeds. In addition, a double-shock which emanates from a finite size contact region behind the crack tip is
observed in the simulations. The predicted double-shock structure of the near-tip fields is in close agreement with the
experimental observations. The calculations additionally predict the presence of a string of surface hot spots which arise
following the passage of the crack tip. The observed and computed hot spot structures agree both in geometry as well as
in the magnitude of the temperature elevation. The analysis thus suggests intermittent friction as the origin of the
experimentally observed hot spots.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Dynamic crack growth along weak planes is a significant mode of failure in composites and other
heterogeneous layered materials. In recent years, bimaterial fracture specimens, fabricated by the bonding
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of a stiff to a compliant material, have been used to demonstrate the occurrence of highly transient and
dynamic crack growth along preferred crack paths in heterogeneous solids. For instance, it has been ob-
served that dynamic interfacial cracks are shear dominated, and that their speeds rapidly approach, and
exceed, the shear wave speed of the more compliant material (Lambros and Rosakis, 1995b; Liu et al., 1995;
Rosakis et al., 1998; Singh et al., 1997; Singh and Shukla, 1996). Thus, these cracks reach intersonic speeds
with respect to the lower wave speed constituent of the composite. In the present context, intersonic crack-
tip speeds are defined as the speeds in the open interval between the shear wave speed and the longitudinal
wave speed. For intersonically moving cracks, a ray emanating from the crack tip, representing a line of
strong discontinuity (shock), has been observed experimentally (Rosakis et al., 1998; Singh and Shukla,
1996) and predicted theoretically (Liu et al., 1995). Intersonic propagation is achieved under loading
conditions that promote locally shear-dominated deformations at the crack tip, which are further enhanced
by the stress mismatch resulting from the bimaterial nature of the solid. Experiments have also provided
clear evidence of large-scale frictional contact. This contact has subsequently been modeled and analyzed
numerically (Huang et al., 1998; Needleman, 1999).

In purely homogeneous materials and in the absence of a weak or prescribed crack growth path, mode-II
crack propagation is not possible because the crack spontaneously kinks and subsequently propagates in a
direction that induces a local Mode-I state of stress around the tip. This is generally not the case in solids
which, while homogeneous (isotropic or anisotropic) as regards their constitutive properties, contain
preferred crack paths, e.g., in the form of a weak plane. In these cases, the weak plane may trap the crack,
thus allowing for mode-II crack growth. Unidirectional composites provide an additional example of a
class of materials which are macroscopically homogeneous but contain preferred crack propagation di-
rections, e.g., in the direction of the fibers, and may therefore support stable mode-II dynamic crack
growth.

Rosakis et al. (1999, 2000) investigated the fracture of two identical, weakly bonded, Homalite plates
subject to asymmetric impact. The Homalite plates, in addition to being constitutively homogeneous, were
also isotropic. The resulting shear cracks, which propagated at speeds between the shear (c;) and the
longitudinal (c¢;) wave speeds of the material, featured two clearly discernible shock waves emanating from
the crack tip. After accelerating to the longitudinal wave speed of Homalite, the shear cracks settled to a
locally steady-state speed slightly above the critical speed v, = v/2¢,. The significance of this speed has been
revealed by a number of early analytical studies of intersonic crack growth and it will briefly be discussed
below.

The first experimental evidence of shear-dominated crack growth along the fibers of a unidirectional
composite material has recently been reported by Coker and Rosakis (1998, 2001). In these experiments, the
shear fractures were found to propagate at record speeds. Thus, the shear cracks were observed to accele-
rate to speeds very close to the longitudinal wave speed along the fibers, ¢, = 7400 m/s, and to subse-
quently oscillate between this speed and a critical speed v. = 6500 m/s. The experiments also furnished
evidence of large-scale frictional contact, in the form of a double-shock wave structure emitted from the
crack tip and the end of the traveling contact zone.

Intersonic shear (mode-II) cracks propagating along a weak plane in an otherwise homogeneous (iso-
tropic or anisotropic) solid have been modeled in a number of early analytical studies, long before ex-
perimental evidence of the attainability of such phenomena was available. By forcing a shear crack to grow
in an isotropic material along a straight path (mathematically equivalent to a weak path or fault), several
researchers (Freund, 1979, 1989; Georgiadis, 1986; Broberg, 1989, 1996, 1999) determined analytically the
critical speed for intersonic crack growth to be v2¢,. For steady crack growth and in the absence of a
cohesive crack-tip structure, this is the only speed at which the energy-release rate is nonzero and finite
(Broberg, 1996).

Singular asymptotic analyses of intersonic crack growth in anisotropic materials were carried out by Piva
and Hasan (1996) and Huang et al. (1999). Shear cracks and dislocations moving intersonically in aniso-
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tropic solids have been studied by Gao et al. (1999) in a unified context. As in the isotropic case, these
analyses have shown that steady intersonic shear-crack growth in anisotropic materials is possible only at a
well-defined intersonic critical speed.

Recently, Broberg (1999) has investigated intersonic crack growth in orthotropic materials in which
crack opening obeys a cohesive law. The chief advantage of allowing for cohesive behavior is that a nonzero
and finite energy-release rate is predicted over the entire intersonic regime. Broberg’s work has additionally
shown that the energy-release rate attains a maximum at values close, but not equal, to the critical speed v,
predicted by the singular theory. Moreover, the location of the maximum tends to v, as the cohesive
strength rises to infinity and, correspondingly, the cohesive-zone shrinks to a point.

In the present study, we use a cohesive model of fracture (Camacho and Ortiz, 1996; Ortiz and Pandolfi,
1999; Ruiz et al., 2000, 2001; Pandolfi et al., 1999) in the numerical simulation of the experiments of Coker
and Rosakis (1998, 2001). The simulations account for explicit crack nucleation (by a self-adaptive
remeshing procedure), crack closure and frictional sliding. We introduce an anisotropic cohesive law, that
leads to the nucleation and the propagation of the crack along the fiber direction, consistent with the
experimental observations. The behavior of the material is assumed to be rate independent, and, conse-
quently, all rate effects predicted by the calculations are due to inertia, combined with the intrinsic time
scale introduced by the cohesive models (Ruiz et al., 2000, 2001). Thus, both the bulk constitutive and the
cohesive law properties used in the numerical model are obtained from quasi-static experiments. The ob-
jective of the study is twofold. Firstly, the numerical simulations reveal insights into the detailed mecha-
nisms underlying observations such as crack-tip speeds and the emergence of hot spots following the
passage of a crack tip. The calculations additionally bear out many of the aforementioned analytical studies
and provide useful glimpses into hard-to-observe features such as the temperature distribution in the in-
terior of the specimen. Conversely, the experimental data provides an exacting validation test suite for
assessing the fidelity of cohesive models of fracture.

The organization of the paper is as follows. In Section 2, we describe the characteristics of the unidi-
rectional graphite-epoxy composite material. In Section 3 we briefly describe the experimental configu-
ration and the diagnostic techniques employed (Coker and Rosakis, 1998, 2001). In Section 4 we summarize
the observations of Coker and Rosakis which provide a basis for the subsequent validation tests. In Section
5 we briefly outline relevant aspects of the finite-element solution procedure. Detailed comparisons between
the finite-element simulations and the experimental data are presented in Section 6. The calculations
demonstrate the ability of cohesive models of fracture to predict salient aspects of the experimental record,
such as the crack-tip position and velocity history, the observed double-shock wave structure, the large-
scale contact between the crack flanks, and the “hot spots” generated by frictional heating. The effect of the
impact speed, cohesive strength and pulse duration is parametrically investigated in Section 6.2.

2. Elastic properties of the graphite—epoxy unidirectional composite

Fig. 1 shows the structure of the graphite-epoxy unidirectional composite tested by Coker and Rosakis
(1998, 2001). Fig. 1a shows two cross-sections of the composite plate, normal and parallel to the fibers
respectively. In Fig. 1b the orthonormal coordinate set adopted is also shown relative to the fibers. The x;-
axis is chosen to be aligned with fibers and the x;-axis is perpendicular to the plate. Fiber-reinforced
composites are characterized by a strong dependence of the material properties (both constitutive and
fracture) on the fibers orientation. The material is stiffer and stronger in the fibers direction; and more
compliant and weaker in other directions. In the material under consideration, the fibers are randomly
distributed in the epoxy matrix; thus the x;—x; plane can be taken as a plane of isotropy, and the material
may be considered transversely isotropic. The elastic constitutive relation is therefore characterized by five
independent moduli, and can be written as (Christensen, 1979)
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Fig. 1. Cross-sections of fiber-reinforced unidirectional graphite—epoxy composite, in direction parallel and normal to the fibers.
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The elastic moduli are related to the engineering moduli E,, E,, i,;, u;, and vy, through the following
relations:
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For the material under consideration, the shear modulus p,, was determined by a quasi-static losipescu
shear test, while uniaxial compression tests were conducted on an MTS hydraulic testing machine in order
to evaluate the Young moduli, E; and E,, and the Poisson ratio, vj;. The measured values of the elastic
moduli are collected in Table 1.

The stiffness coefficients are also related to the plane strain longitudinal and shear wave speeds along the
major axes by the following relations:

[ /cu L [ex 66
o =4/— ¢ =4/ c=,/— 5
1=/ G ) ) (5)

The longitudinal wave speeds parallel c{‘ and perpendicular ¢j- to the fibers and the shear wave speed ¢, were
obtained using ultrasonic pressure and shear transducers operating at 5 MHz frequency. The average mass
density p of the composite plate was 1478 kg/m?. Relations (5) have been used to verify the values of the
stiffness coefficients computed by Egs. (2)-(4). Table 2 reports the measured bulk wave speeds values for
plane strain conditions, as well as the Rayleigh wave speed C‘lll = 0.99¢;, for waves propagating in the fibers
direction. In the last column we report the corresponding wave speed values calculated from Eq. (5) under
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Table 1
Material properties for the graphite—epoxy unidirectional composite
Coefficient GPa Parameter
c1 82.0 E, 80.0 GPa
Cc» 11.1 Ez = E3 8.9 GPa
cp 4.0 oy 3.1 GPa
3 4.9 iy = U3 3.6 GPa
Ce6 3.6 Vi2 = V13 0.25
Ca4 3.1 Va3 0.43
Table 2
Characteristic plane strain (measured) and plane stress (calculated) wave speeds for the graphite-epoxy unidirectional composite
Wave type Plane strain wave speed (m/s) Plane stress wave speed (m/s)
d 7450 £ 100 7380
o 2740 + 100 2470
cs 1560 + 50 1560
cl 1548 1548

plane stress condition, i.e., using the reduced stiffness matrix ¢’ obtained through the following relations
(Coker and Rosakis, 2001):

2 2
c c ciace

o 12 P 23 /. 12€23 ;o

Cly=Ci1—— Cp=Cnp——, CHp=Cin— y  Cee = Cé6 (6)
C2 (&0) C2

3. Experimental setup

In the experiments of Coker and Rosakis (1998, 2001) fiber-reinforced epoxy matrix composite plates of
dimension 203 mm x 127 mm x 7 mm were used. The specimens comprised 48 plies of graphite fiber in an
epoxy matrix. The plates had an edge pre-notch machined in the fibers direction and were loaded by
projectile impact in a one-point bend configuration, as shown in Fig. 2. The projectile was fired by a gas-
gun, with an impact speed ranging from 10 to 57 m/s. The optical method of coherent gradient sensing
(CGS) was used in a reflective arrangement to record the gradient of the out-of-plane displacements on a 50
mm diameter area of the specimen surface, around the crack tip. An infrared high-speed camera measured
the temperature field over a | mm? area on the other side of the plate, at a location close to the pre-notch
tip. In the experiments the composite plates were impacted from either the side of the notch, Fig. 2, or the
opposite side (not shown in the figure).

The CGS is a full field shearing interferometric technique sensitive to in-plane gradients of the out of
plane displacements in reflection mode and to in-plane stress gradients in transmission mode. A detailed
description of the technique and of the equations governing optical mapping and fringe formation may be
found elsewhere (Tippur et al., 1990, 1991). A schematic of the experimental setup of the CGS optical
technique is shown in Fig. 3.

For opaque materials, CGS uses a coherent, monochromatic, collimated laser beam which is shone on,
and subsequently reflected by, the optically flat and specularly reflective surface of the specimen. Near the
crack tip, the reflected beam acquires an optical path difference due to the deformation of the specimen
surface. The reflected beam crosses two high-density line diffraction gratings of pitch p = 0.0254 mm (40
lines/mm), normal to x; direction, Fig. 3, and separated by a distance 4. The gratings diffract the reflected
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Fig. 2. Single edge notch (SEN) specimen geometry (thickness 7 mm) and size for shear-dominated dynamic fracture experiments.
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Fig. 3. Schematic of the experimental setup and optical technique of CGS.

beam and recombine it to form an interferogram. The reflected light is collected by a filtering lens, which
blocks all but either of the +1 diffraction orders. One of those two remaining diffraction spots is imaged to
produce an interference pattern on the image plane of a high-speed camera.
When used in reflective mode, CGS measures the in-plane gradients of out-of-plane displacement
u3(x1,x,) according to the relation (Tippur et al., 1990, 1991)
Ous mp
=_—=— =0,+1,42,... 7
us» aXZ 24’ m ) ) ) ( )
where m is the fringe order for the x, gradient contours. Eq. (7) holds when the lines of gratings are parallel
to x; direction. Each CGS fringe is a locus of points of constant u;, on the specimen surface. Under plane-

stress linear-elastic conditions, u3(x1,x,) is related to the average stresses across the thickness as follows
(Lambros and Rosakis, 1995b; Liu et al., 1998):

h
us =5 (b31611 + b32022) (8)
where /£ is the specimen thickness and b,;; are components of the compliance matrix, inverse to the elastic
moduli matrix in Eq. (1).
On the opposite side of the plate, and simultaneously with the CGS measurements, a full-field, high-
speed infrared imaging system, Fig. 4, was employed to measure the evolving, two-dimensional temperature
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Fig. 4. The infrared high-speed camera.

field along the crack path. The thermal camera is designed to capture full-field images at a rate of 10°
frames per second with a system rise time of 750 ns (Zehnder et al., 2000). An essential component of the
system is an 8 x 8 focal-plane array of HgCdTe IR detector elements. Each detector element is
100 mm x 100 mm in size, with center-to-center spacing of 130 mm. The detectors are housed in a liquid
nitrogen dewar and are operated at a temperature of 77 K to maximize the signal-to-noise ratio. The
camera is focused on 1.1 mm x 1.1 mm area ahead of the notch tip. Radiation emitted from the object
as it deforms and heats up is focused onto the IR focal plane array. A calibration curve for the graphite—
epoxy composite used in the tests was obtained which enabled the conversion of voltage signals to tem-
peratures.

4. Experimental observations

A sequence of six CGS interferograms, corresponding to shear-dominated dynamic crack growth along
the fibers, is shown in Fig. 5 (Coker and Rosakis, 1998, 2001). As the dynamic shear crack initiates and
propagates directly ahead of the initial pre-notch, it accelerates and a marked change can be observed in the
shapes of the crack-tip fringe patterns. Thus, the rear fringe loop shape changes from rounded (see first
three frames) to a triangular wedge, bounded by a line of highly concentrated fringes emerging from the
crack tip at a well-defined angle (see Fig. 5, last three frames). This line is caused by a steep change in the
stress gradients in a localized area, which, as the crack exceeds the shear wave speed, forms a stress dis-
continuity or shock (Liu et al., 1995; Rosakis et al., 1998; Huang et al., 1999). Finally this line broadens into
two parallel lines (a double-shock wave) which intercept the crack surfaces over a finite area of about 4-5
mm behind the crack tip.

One possible reason for the observed double-shock structure may be the existence of a finite size contact
region behind the crack tip. A similar phenomenon of large-scale contact during intersonic crack growth in
bimaterials was reported by Lambros and Rosakis (1995a), and numerically simulated by Needleman and
Rosakis (1999). The presence of the contact region in the graphite—epoxy composite experiments is strongly
supported by the two-dimensional high-speed infrared camera images (presented in this paper for the first
time). Infrared thermal images are shown in Fig. 6 for one of the shear crack growth experiments. The
camera is focused on the square area (1.1 mm x 1.1 mm) ahead of the notch tip as shown in the top-left
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Fig. 5. Experimental observations: sequence of CGS interferograms showing intersonic crack tip at times 2.8, 4.2, 5.6, 6.9, 8.3, 9.7 ps.
The field of view is a 50 mm diameter circle around the pre-notch tip (Coker and Rosakis, 1998, 2001).

40 us 50 us 70

20

Fig. 6. Experimental observations: high-speed infrared images of hot spot formation due to contact behind an intersonically moving
shear crack. The top-left image shows the size of the exposed area (1.1 mm x 1.1 mm square ahead of the crack tip). The following
images show contours of constant temperature at different time steps.

image of Fig. 6. The following images in Fig. 6 show contours of constant temperature elevation at sub-
sequent times. Local hot spots are observed to form along the fracture surfaces due to frictional contact.
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Hot spots appear firstly after the crack completely crossed the specimen width, and in the initial stages their
position shifts frequently in time. It seems evident that the wave reflection between the plate edges helps
the intermittent frictional contact between the two fracture surfaces. The high-temperature region is
initially localized to the crack surfaces and subsequently grows in width, until it finally saturates the in-
frared detectors. It should be carefully noted that the measured temperatures represent averages over a
100 um x 100 um area, and thus are likely to be lower than the actual peak temperatures.

The instantaneous crack-tip position can be recovered from the frames recorded by the high-speed
camera. For each experiment it is possible to determine the crack length and, by numerical differentiation of
the crack-tip record, the crack-tip speed history. It bears emphasis that in all the experiments the crack-tip
speed exceeded the shear-wave speed and was clearly intersonic (Coker and Rosakis, 1998, 2001), with
average values close to 6000 m/s. The elastic asymptotic field analysis of Huang et al. (1999) gives the
following expression for the critical crack-tip speed v.:

E

Ve = €4 | ————
TV (T4 )

©)

For the graphite—epoxy composite material properties reported above, Eq. (9) gives v. = 6327 m/s, which,
allowing for the experimental error inherent in the determination of crack-tip speeds, is in remarkable
agreement with experiment (Coker and Rosakis, 1998, 2001). It is also noteworthy that the highest mea-
sured crack-tip speed was 7400 m/s, which is, within experimental error, ostensibly equal to the longitudinal
wave speed ¢; in the fibers direction. To the best of our knowledge, this is the highest crack-tip speed ever
observed in a laboratory setting or ever reported in the open literature.

5. Anisotropic cohesive model

Our calculations employ the cohesive model proposed by Camacho and Ortiz (1996), and subsequently
extended to three dimensions by Ortiz and Pandolfi (1999), in order to simulate crack initiation and growth.
In the present work, these models are extended so as to account for the anisotropy induced by the rein-
forcing fibers in the fracture properties of the composite.

In adopting a cohesive description of fracture, the formation of a crack is regarded as a gradual process
of separation, either by opening or by shearing, leading to the formation of new free surfaces. The cohesive
law furnishes the traction vector ¢ across the cohesive surface as a function of the opening displacement
6 = [[u]. Following Camacho and Ortiz (1996), this cohesive behavior is formulated in terms of the effective
opening displacement

5=\ B3+ (10)

where

op=0-n (11)
is the normal component of the opening displacement and

0s = |6 — Onn| (12)

is the magnitude of the tangential opening displacement, Fig. 7. The cohesive behavior under monotonic
loading is then assumed to be governed by a cohesive potential ¢(d). The resulting tractions are of the form

_ % _

= o5 = (B0 + un) (13)
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Fig. 7. Decomposition of the opening displacement into normal and tangential components.

where

t=\/pts) + 2 (14)

is an effective cohesive traction,

th=t-n (15)
is the normal component of the cohesive traction and

ts = |t — t,n] (16)

is the magnitude of the tangential opening displacement. It follows from Eq. (14) that the parameter f§
measures the ratio of shear and normal cohesive strength of the material. It also roughly defines the ratio of
Kji. to Kj. of the material (Ruiz et al., 2000). The particular monotonic envelop adopted in calculations is
shown in Fig. 8. Thus, potential cohesive surfaces are assumed to be rigid up to the attainment of the
cohesive strength o, and the effective cohesive traction to subsequently decrease linearly and vanish upon
the attainment of a critical effective opening displacement J.. The resulting fracture energy of the material is
G, = 0.0./2 (Ortiz and Pandolfi, 1999). The cohesive element is rendered irreversible by unloading to the
origin from the monotonic envelop just described, Fig. 8 (Camacho and Ortiz, 1996).

It is interesting to note that our numerical model is fully rate independent, i.e., the bulk constitutive law
and the cohesive law are fed with quasi-static mechanical parameters only. Thus, all the rate effects pre-
dicted by the calculations are a consequence of inertia combined with the characteristic time of cohesive
models (Camacho and Ortiz, 1996).

t/c. A
1
G.=0.6./2
0 6max /80 6/8(,

Fig. 8. Linearly decreasing monotonic envelop and loading/unloading rule.
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It bear emphasis that upon closure, the cohesive surfaces are subjected to the contact unilateral con-
straint, including friction. We regard contact and friction as independent phenomena to be modeled outside
the cohesive law. In Egs. (10)—(16) ¢, is assumed equal to zero if negative (crack flanks closure), and a
suitable contact law is activated.

The unidirectional structure of fiber-reinforced composites induces a marked anisotropy in their fracture
properties. Thus, these composites are designed so as to increase the strength of the matrix material in the
direction of the fibers, while the strength parallel to the fibers remains ostensible identical to that of the
matrix. In consequence, the toughness of the material attains a maximum when the crack plane is normal to
the fibers, and it attains a minimum when the crack plane contains the direction of the fibers. This ori-
entation dependence of the toughness of fiber-reinforced composites has been analyzed by Allix and
Ladeveze (1992), Corigliano (1993) and Allix et al. (1995). In the present work, we model fracture an-
isotropy as a dependence of the cohesive strength o.(n) on the normal n to the crack plane. Assuming that
this dependence is quadratic and invariant upon reflection of n to —n we further have

Gc(”) = lenlnj (17)

where the tensor X;; is a material property. In particular, fiber-reinforced composites are transversely
isotropic in the direction of the fibers. Taking this symmetry into account, Eq. (17) reduces to

0e(n) = Gc min + (Gc max — Oc min) COS” (18)

where o is the angle between n and the direction of the fibers, o, . denotes the maximum cohesive strength
normal to the fibers, and 6 ,;, denotes the minimum cohesive strength parallel to the fibers. The fracture
properties of the graphite—epoxy material used in calculations are collected in Table 3. The ratio between
maximum and minimum cohesive strength has not been directly measured.

In order to gain some understanding of the hot-spots which are observed to develop behind the crack tip,
we additionally account for crack closure and for Coulomb friction between the crack flanks. These effects
are modeled by means of the friction algorithm proposed by Giannakopoulos (1989). This algorithm in-
troduces a slight surface compliance into Coulomb’s law and updates the traction vector by a nonassociated
return mapping algorithm. The temperature rise in the contact area is estimated through the relation

T =T 19

0+ oCoL (19)
where Tj is the initial temperature, p is the mass density, C, is the heat capacity, L is a characteristic width of
the initial thermal layer, and

F=t-[u] (20)

is the work of friction. Thus we assume that, initially, the entire work of friction is converted into heat
within a small boundary layer of thickness L, which accounts for the fracture surface asperities. This model
is aimed at describing the observed short-term response of the specimen, including the development of hot
spots. The longer term evolution of the temperature field, which involves heat conduction, is not accounted

Table 3

Fracture properties of the graphite—epoxy unidirectional composite used in calculations
Fracture toughness normal to the fiber K¢ min 2.2 MPay/m
Fracture energy normal to the fiber Gie min 474.0 N/m
Cohesive strength normal to the fiber Oc min 35.8 MPa
Maximum/minimum cohesive strength ratio Oc max/Oc min 100
Shear/normal strength ratio p=1./0. 0.726

Critical opening displacement dc 0.0265 mm




6146 C. Yu et al. | International Journal of Solids and Structures 39 (2002) 6135-6157

Table 4

Frictional and thermal parameters used in calculations
Friction coefficient fc 0.7
Heat capacity C, 1170 J/kgK
Thermal layer thickness L 0.003 mm

for in the analysis. The numerical values of the frictional and thermal parameters used in calculations are
collected in Table 4.

6. Numerical results

The experimental observations described in the foregoing provide a rich data set for the validation of
cohesive models of fracture. Conversely, the detailed simulation of the experiments of Coker and Rosakis
(1998, 2001) presented in this section provide useful insights into the mechanisms underlying the observed
behavior. All calculations are carried out using explicit dynamics, thus the time step is upper-bounded by
stability (Hughes, 1983). The effect of the projectile impact, smoothed by the presence of a steel plate,
is approximated by prescribing a velocity profile over the contact area, Fig. 9. The impulse duration ¢, is
taken to be 27.3 ps; both the rise time ¢, and the ramp-down time #4 are 2 ps. The plateau extension is
defined by the mass and the length of the projectile. For simplicity, the duration of the ramp-down time has
been taken equal to the rise time. Observe that the tail extension of the velocity profile does not affect the
numerical analysis, since the crack crosses the entire width of the specimen in 22.2 us. The impact velocity
in the numerical analyses is assumed to be 30 m/s, unless differently stated.

The particular class of cohesive elements used in calculations consists of two six-node triangles endowed
with quadratic displacement interpolation (Ortiz and Pandolfi, 1999), Fig. 10. Further details of the for-
mulation can be found in Ortiz and Pandolfi (1999). Following Camacho and Ortiz (1996), we adaptively
create new surfaces as required by the cohesive model by duplicating nodes along previously coherent
volume elements interfaces and inserting a new cohesive element. We insert a cohesive element when the
effective traction acting on an element interface reaches the cohesive strength of the interface, i.e., when

t > a.(n) (21)

where ¢ is given by (13), n is the normal to the interface and, for the fiber-reinforced composites under
consideration here, o.(n) is given by (18). An efficient implementation of the cohesive element insertion
procedure may be found in Pandolfi and Ortiz (1998, 2002).

Vi

Vibeo-o--

0 t, ta—t, t

Fig. 9. Impact velocity profile adopted in the simulations.
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Fig. 10. Geometry of cohesive element. The surfaces S~ and S* coincide in the reference configuration of the solid.

The specimen is discretized into ten-node quadratic tetrahedral elements. We employ two meshes: a
coarse mesh comprising 5465 nodes and 2666 elements, Fig. 11a; and a fine mesh which comprises 44,593
nodes and 24,685 elements, Fig. 11b. The minimum mesh size /,,;, = 2.15 mm in the coarse mesh is chosen

so as to resolve the characteristic cohesive zone size, which may be estimated as (Dugdale, 1960; Barenblatt,
1962; Rice, 1968)

Fig. 11. Computational meshes. (a) Coarse mesh, /i, = 2.15 mm, 5465 nodes, 2666 elements. (b) Fine mesh, Ay, = 0.5 mm, com-
prising 44,593 nodes and 24,685 elements.
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(22)

where E = E, is the Young modulus, v = vj, the Poisson ratio, G. the specific fracture energy, and o,
represents an average cohesive traction. For the assumed linearly decreasing cohesive envelop, oy = 0.50,
and the corresponding cohesive zone size is R = 5.5 mm, which is indeed resolved by the coarse mesh. The
minimum mesh size in the fine mesh is Ay, ~ 0.5 mm. The corresponding stable time steps (Hughes, 1983)
adopted in the calculations are 0.024 ps for the coarse mesh and 0.0056 ps for the fine mesh.

6.1. Crack-tip speed

Fig. 12 shows a comparison between experimentally observed and computed crack-tip speeds as a
function of crack extension. For consistency, the same numerical differentiation scheme for calculating the
crack speed was applied to the experimental data and the computed results. The experimental data suggests
that the crack accelerates following initiation and attains intersonic speeds, lying between the Rayleigh and
the shear wave speeds of the material, after an extension of about 35 mm. These features are closely
captured by the numerical calculations. It is interesting to note that the calculated crack-tip speed vs po-
sition relation is relatively insensitive to the mesh size. In particular, the discrepancy in the curves resulting
from the coarse and fine meshes is within experimental error.

Four successive snapshots of the numerical contour levels of the normal stress component o, are shown
in Fig. 13. The first snapshot shows the initial compressive wave induced by the impact, as it travels the
width of the lower half of the specimen. In subsequent snapshots a double-shock wave structure becomes
clearly evident. A direct comparison between the calculated shock wave structure around the crack tip and
the corresponding experimental CGS fringes at time 18.6 ps is given in Fig. 14. The close agreement be-
tween the two images is remarkable. The swept-back double-shock structure of the near-tip fields is strongly
suggestive of intersonic crack growth and frictional contact between the crack flanks, and is in accordance
with the existing asymptotic solutions (Freund, 1979; Huang et al., 1999; Gao et al., 1999). A close in-
spection of the crack-face regions in the experimental and numerical images reveals a string of local fringe
concentrations, which is suggestive of intermittent frictional interactions between the crack flanks.
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Fig. 12. Crack-tip speed vs crack-tip position: comparison between experiments (Coker and Rosakis, 1998, 2001) (symbols) and
numerical results (lines). The crack-tip velocity clearly reaches intersonic values lying between the shear and the longitudinal wave
speed.
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(b)

(©)

Fig. 13. Numerically computed contour levels of a5, at times: (a) 10.8 us; (b) 14.4 us; (c) 18.6 ps; (d) 22.2 ps.

(d)
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Fig. 14. Comparison between (a) experimental (Coker and Rosakis, 1998, 2001) and (b) numerical shock wave structure. The color
scale in the numerical contour plot in (b) agrees with the legend in Fig. 13.

Fig. 15. Numerical contour levels of the damage variable at time 9.6, 12, 13.2, 15.6, 18.6 and 22.2 ps.

Fig. 15 shows the evolution of the crack front within the crack plane, as obtained in the numerical
calculations. The plot depicts contours of damage, defined as the ratio D of the spent to total fracture
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Fig. 16. Comparison of experimental (top) and numerical (bottom) temperature values. Experimental images are taken at times 40, 50,
61 and 75 ps. Numerical images are taken at times 40, 50, 60 and 70 ps.

energy per unit surface. With this definition, the damage variable is dimensionless and ranges from 0,
corresponding to an intact surface, to 1, corresponding to a fully crack surface. The transition zone wherein
the damage variable takes intermediate values may be regarded as the cohesive zone, and the crack front
may conventionally be identified with the level contour D = 1/2. It is interesting to note that the crack front
is concave in the direction of propagation, a feature which is characteristic of mode-II crack growth. Thus,
in marked contrast to mode-I cracks, the interior of the crack front ostensibly lags behind the points of
intersection with the lateral surfaces. At about 22.2 ps after impact the crack has swept through the entire
width of the specimen.

As already mentioned, the double-shock structure of the near-tip field and the string of trailing ‘shoc-
klets’ are suggestive of intermittent frictional interactions between the crack flanks. One manifestation of
this intermittent friction is the experimentally observed ‘hot spots’ alluded to in Section 4. Selected frames
recorded by the infrared camera are collected in Fig. 16a, and are compared to the corresponding calculated
frames in Fig. 16b. Interestingly, both sets of frames show a string of surface hot spots which arise fol-
lowing the passage of the crack tip. The observed and computed hot-spot structures agree both in geometry
as well as in the magnitude of the temperature elevation. The analysis thus suggests intermittent friction as
the origin of the experimentally observed hot spots. Fig. 17 additionally depicts the computed through-
thickness variation of the crack-flank temperature field. It is interesting to note that the hot spots arise near
the surface, which suggests that most of the frictional contact occurs in that region. The hot-spot patterns
on either side of the specimen are quite dissimilar, which underscores the three-dimensional nature of the
frictional interactions and, more generally, of shear-crack growth.

6.2. Parametric studies

We conclude this section by presenting parametric studies on the effect of the impulse time, fracture
energy and cohesive strength o, on the crack-tip length and velocity histories.

Fig. 18 depicts the crack-speed history at an impact speed of 50 m/s, a cohesive strength of 35.8 MPa and
impact durations ranging from 2.5 to 31 ps. As may be observed in the figure, the impulse duration has a
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Fig. 17. Numerical temperature distribution across the crack surface at time 40, 50, 60 and 70 ps.
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Fig. 18. Parametric study. Crack-speed history as a function of crack tip location at different impact durations. The impact speed is 50
m/s.

marked effect on the crack-tip speed history and the maximum attained crack-tip speed. For an impulse
duration in excess of 4 ps, the crack reaches the critical speed v, and propagates stably at this speed through
most of the width of the specimen. For an impact duration of 2.5 s, the crack accelerates to the Rayleigh
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Fig. 19. Parametric study. Crack-speed history as a function of fracture energy. The parameter R? is the ratio between the fracture
energy used in the calculations and the measured value. The cohesive strength o, and critical opening displacement . are both scaled
by the same factor R,. The impact speed is 30 m/s and impulse duration is 31 ps.

wave speed and subsequently arrests permanently after some crack advance. For an impact duration of 2.75
us the crack-tip speed appears to vacillate between two values above and below the Rayleigh wave speed
before eventually arresting.

We have also investigated the effect of fracture energy on crack-tip speed. In order to vary the fracture
energy, we apply a common scaling factor Ry in the range 0.1-7.5 to the cohesive strength o. and the critical
opening displacement J., with the result that the fracture energy G. is scaled by R2. A ratio R, = 1 cor-
responds to the measured value of the fracture energy. In all calculations, the impulse duration is kept at 31
ps and the impact speed at 30 m/s. Fig. 19 shows the computed crack-tip histories. The main effect of an
increase (decrease) in fracture energy is to retard (anticipate) the crack-growth initiation time, and to reduce
(increase) the maximum propagation speed. For the highest value of the fracture energy the crack-tip speed
remains below the Rayleigh wave speed and the crack arrests shortly after initiation. It is particularly
noteworthy that for a sufficiently small fracture energy the crack speed attains values in the vicinity of the
longitudinal wave speed, in keeping with the observations of Needleman (1999). For fracture energies
corresponding to Ry in the range of 1-6 the crack-tip speed attains the critical value v.. For intermediate
fracture energies corresponding to ratios R, = 6.5 and 7.0, the maximum crack-tip speed exceeds the
Rayleigh wave speed by remains below v.. The higher fracture energies result in intermittent crack growth,
with alternating growth and arrest phases.

Fig. 20 shows the effect of impact velocity on crack propagation. In all cases, the impulse duration is held
at 31 ps and the cohesive strength at 35.8 MPa, while the impact velocity ranges from 10 to 200 m/s. For
impact velocities in the range of 20-50 m/s, the crack tip rapidly reaches the critical speed v. and subse-
quently propagates at nearly constant speed. For impact velocities of 100 and 200 m/s, the maximum crack-
tip speed approaches or attains the longitudinal wave speed ¢; = 7450 m/s.

Finally, in Fig. 21 we plot the minimum value of the impact speed required in order to attain the critical
crack-tip speed v, as a function of impulse duration. In all calculations, the cohesive strength is held
constant at g, = 35.8 MPa. The attainment of the critical speed depends sensitively on the supply of energy,
which is controlled by experimental parameters such as the impact speed or the impulse duration. The
impulse duration is in turn a function of the length and mass of the projectile. The trend exhibited in Fig. 21
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Fig. 20. Parametric study. Crack-speed history at different impact speeds. The cohesive strength is held at 35.8 MPa and the impulse
duration at 31 ps.
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Fig. 21. Numerical evaluation of the minimum impact velocity required in order to attain the critical crack-tip speed v, as a function of
impulse duration. The cohesive strength is g, = 35.8 MPa.

is qualitatively similar to the predictions of Needleman and Rosakis (1999) for intersonic crack growth in
metal/polymer bimaterials.

7. Summary and conclusions

We have used an anisotropic cohesive model of fracture to simulate Coker and Rosakis’ experiments
(1998, 2001), where intersonic shear-dominated crack growth in unidirectional graphite—epoxy composites
was observed. The simulations account for explicit anisotropic crack nucleation, crack closure and fric-
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tional sliding. The parameters used in the numerical models for the bulk constitutive and cohesive laws were
obtained from quasi-static experiments. The behavior of the material is assumed to be rate independent
and, consequently, all rate effects predicted by the calculations are due to inertia and to the intrinsic time
scale typical of cohesive models (Ruiz et al., 2000, 2001).

The numerical results clearly capture the state of stress around the propagating crack, including the
double-shock structure, the crack speed regimes and surface hot spots observed behind the crack in the
experiments.

The intersonic crack speed regimes revealed by the simulations presented here are consistent with the
analyses of Huang et al. (1999) and Gao et al. (1999). Thus, the calculations suggest that, provided that
sufficient energy is supplied to the crack tip, the critical speed v, is a preferred crack-tip speed for locally
steady-state growth of dynamic shear cracks. The special significance conferred to the critical speed v, by
the analytical studies of Huang et al. (1999) and Gao et al. (1999) is amply born out by our numerical
calculations. If the crack is driven hard enough, it becomes possible to for the crack tip to attain speeds in
the vicinity of the longitudinal wave speed in the direction of the fibers, in keeping with the observations of
Needleman (1999).

The calculations also predict a double-shock which emanates from a finite size contact region behind the
crack tip. A similar phenomenon of large-scale contact during intersonic crack growth in bimaterials was
reported by Lambros and Rosakis (1995a) and numerically simulated by Needleman and Rosakis (1999).
The predicted double-shock structure of the near-tip fields is in close agreement with the experimental
observations. The calculations additionally predict the presence of a string of surface hot spots which arise
following the passage of the crack tip. The observed and computed hot-spot structures agree both in ge-
ometry as well as in the magnitude of the temperature elevation. The analysis thus suggests intermittent
friction as the origin of the experimentally observed hot spots.

Finally, the parametric study permits to evaluate the influence of experimental parameters as impact
speed and impulse duration on the attainment of the critical speed v.. The trend exhibited by the numerical
results is qualitatively similar to the prediction of Needleman and Rosakis (1999).
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